Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 278
1.
Genes (Basel) ; 15(3)2024 Mar 11.
Article En | MEDLINE | ID: mdl-38540409

INTRODUCTION: Alexander disease (AxD) is a rare neurodegenerative condition that represents the group of leukodystrophies. The disease is caused by GFAP mutation. Symptoms usually occur in the infantile age with macrocephaly, developmental deterioration, progressive quadriparesis, and seizures as the most characteristic features. In this case report, we provide a detailed clinical description of the neonatal type of AxD. METHOD: Next-Generation Sequencing (NGS), including a panel of 49 genes related to Early Infantile Epileptic Encephalopathy (EIEE), was carried out, and then Whole Exome Sequencing (WES) was performed on the proband's DNA extracted from blood. CASE DESCRIPTION: In the first weeks of life, the child presented with signs of increased intracranial pressure, which led to ventriculoperitoneal shunt implementation. Recurrent focal-onset motor seizures with secondary generalization occurred despite phenobarbital treatment. Therapy was modified with multiple anti-seizure medications. In MRI contrast-enhanced lesions in basal ganglia, midbrain and cortico-spinal tracts were observed. During the diagnostic process, GLUT-1 deficiency, lysosomal storage disorders, organic acidurias, and fatty acid oxidation defects were excluded. The NGS panel of EIEE revealed no abnormalities. In WES analysis, GFAP missense heterozygous variant NM_002055.5: c.1187C>T, p.(Thr396Ile) was detected, confirming the diagnosis of AxD. CONCLUSION: AxD should be considered in the differential diagnosis in all neonates with progressive, intractable seizures accompanied by macrocephaly.


Alexander Disease , Bone Diseases , Demyelinating Diseases , Drug Resistant Epilepsy , Hyponatremia , Lysosomal Storage Diseases , Megalencephaly , Spasms, Infantile , Child , Infant, Newborn , Humans , Alexander Disease/genetics , Alexander Disease/pathology , Glial Fibrillary Acidic Protein/genetics , Megalencephaly/genetics
2.
Am J Med Genet A ; 194(5): e63516, 2024 May.
Article En | MEDLINE | ID: mdl-38168088

The NFIX gene encodes a DNA-binding protein belonging to the nuclear factor one (NFI) family of transcription factors. Pathogenic variants of NFIX are associated with two autosomal dominant Mendelian disorders, Malan syndrome (MIM 614753) and Marshall-Smith syndrome (MIM 602535), which are clinically distinct due to different disease-causing mechanisms. NFIX variants associated with Malan syndrome are missense variants mostly located in exon 2 encoding the N-terminal DNA binding and dimerization domain or are protein-truncating variants that trigger nonsense-mediated mRNA decay (NMD) resulting in NFIX haploinsufficiency. NFIX variants associated with Marshall-Smith syndrome are protein-truncating and are clustered between exons 6 and 10, including a recurrent Alu-mediated deletion of exons 6 and 7, which can escape NMD. The more severe phenotype of Marshall-Smith syndrome is likely due to a dominant-negative effect of these protein-truncating variants that escape NMD. Here, we report a child with clinical features of Malan syndrome who has a de novo NFIX intragenic duplication. Using genome sequencing, exon-level microarray analysis, and RNA sequencing, we show that this duplication encompasses exons 6 and 7 and leads to NFIX haploinsufficiency. To our knowledge, this is the first reported case of Malan Syndrome caused by an intragenic NFIX duplication.


Abnormalities, Multiple , Bone Diseases, Developmental , Craniofacial Abnormalities , Intellectual Disability , Megalencephaly , Septo-Optic Dysplasia , Sotos Syndrome , Child , Humans , NFI Transcription Factors/genetics , Sotos Syndrome/genetics , Exons/genetics , Megalencephaly/genetics , Intellectual Disability/genetics , Sequence Analysis, RNA
3.
Fetal Diagn Ther ; 51(2): 154-158, 2024.
Article En | MEDLINE | ID: mdl-38008077

INTRODUCTION: Megalencephaly-polymicrogyria-polydactyly-hydrocephalus (MPPH) syndrome is a rare autosomal dominant disorder characterized by megalencephaly (i.e., overgrowth of the brain), polymicrogyria, focal hypoplasia of the cerebral cortex, and polydactyly. Persistent hyperplastic primary vitreous (PHPV) involves a spectrum of congenital ocular abnormalities that are characterized by the presence of a vascular membrane behind the lens. CASE PRESENTATION: Here, we present a case of foetal MPPH with PHPV that was diagnosed using prenatal ultrasound. Ultrasound revealed the presence of megalencephaly, multiple cerebellar gyri, and hydrocephalus. Whole-exome sequencing confirmed the mutation of the AKT3 gene, which led to the consideration of MPPH syndrome. Moreover, an echogenic band with an irregular surface was observed between the lens and the posterior wall of the left eye; therefore, MPPH with PHPV was suspected. CONCLUSION: MPPH syndrome with PHPV can be diagnosed prenatally.


Hydrocephalus , Malformations of Cortical Development , Megalencephaly , Persistent Hyperplastic Primary Vitreous , Polydactyly , Polymicrogyria , Pregnancy , Female , Humans , Polymicrogyria/diagnostic imaging , Polymicrogyria/genetics , Persistent Hyperplastic Primary Vitreous/diagnostic imaging , Magnetic Resonance Imaging , Malformations of Cortical Development/diagnosis , Malformations of Cortical Development/genetics , Hydrocephalus/diagnostic imaging , Megalencephaly/genetics , Polydactyly/diagnostic imaging , Polydactyly/genetics , Syndrome , Ultrasonography, Prenatal
4.
Am J Med Genet A ; 194(3): e63449, 2024 Mar.
Article En | MEDLINE | ID: mdl-37876348

Thauvin-Robinet-Faivre syndrome (#617107) is a rare autosomal recessive overgrowth syndrome characterized by intellectual disability, facial dysmorphism, macrocephaly, and variable congenital malformations. It is caused by homozygous or compound heterozygous FIBP gene mutations. The FIBP gene is located on the 11q13.1 region and codes the acidic fibroblast growth factor intracellular binding protein, which is involved in the fibroblast growth factor (FGF) signaling pathway. FGF signaling is required for neurogenesis and neuronal precursor proliferation. The FGF controls cell proliferation, differentiation, and migration in embryonic development and in adult life. Overgrowth syndromes consist of a wide spectrum disorders characterized by prenatal and postnatal excess growth in weight and length, often associated malformations, intellectual disability, and neoplastic predisposition. Embryonic tumors are especially common in these syndromes. Thauvin-Robinet-Faivre syndrome is a recently described overgrowth syndrome with typical facial dysmorphic and clinical features. To date, only four patients have been reported with this disorder. Herein, two new cases of Thauvin-Robinet-Faivre syndrome are reported with overgrowth, intellectual disability, typical dysmorphic signs in one dysplastic kidney, and a novel homozygous FIBP gene variant. Exome sequencing analysis showed that both affected siblings share the same homozygous c. 412-3_415dupCAGTTTG FIBP gene variant. Reporting two new cases with this rare autosomal recessive overgrowth syndrome with a novel FIBP gene variant will support and expand the clinical spectrum of Thauvin-Robinet-Faivre syndrome. Also discussed will be the function of FIBP in tumorigenesis and the possible renal tumor susceptibility in heterozygous carriers will be emphasized.


Intellectual Disability , Megalencephaly , Humans , Carrier Proteins/genetics , Heterozygote , Homozygote , Intellectual Disability/pathology , Megalencephaly/genetics , Membrane Proteins/genetics , Mutation
5.
Am J Hum Genet ; 111(1): 119-132, 2024 Jan 04.
Article En | MEDLINE | ID: mdl-38141607

Cyclin D2 (CCND2) stabilization underpins a range of macrocephaly-associated disorders through mutation of CCND2 or activating mutations in upstream genes encoding PI3K-AKT pathway components. Here, we describe three individuals with overlapping macrocephaly-associated phenotypes who carry the same recurrent de novo c.179G>A (p.Arg60Gln) variant in Myc-associated factor X (MAX). The mutation, located in the b-HLH-LZ domain, causes increased intracellular CCND2 through increased transcription but it does not cause stabilization of CCND2. We show that the purified b-HLH-LZ domain of MAXArg60Gln (Max∗Arg60Gln) binds its target E-box sequence with a lower apparent affinity. This leads to a more efficient heterodimerization with c-Myc resulting in an increase in transcriptional activity of c-Myc in individuals carrying this mutation. The recent development of Omomyc-CPP, a cell-penetrating b-HLH-LZ-domain c-Myc inhibitor, provides a possible therapeutic option for MAXArg60Gln individuals, and others carrying similar germline mutations resulting in dysregulated transcriptional c-Myc activity.


Megalencephaly , Proto-Oncogene Proteins c-myc , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Dimerization , Megalencephaly/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
6.
Genes (Basel) ; 14(9)2023 08 23.
Article En | MEDLINE | ID: mdl-37761804

Snijders Blok-Campeau syndrome (SNIBCPS, OMIM# 618205) is an extremely infrequent disease with only approximately 60 cases reported so far. SNIBCPS belongs to the group of neurodevelopmental disorders (NDDs). Clinical features of patients with SNIBCPS include global developmental delay, intellectual disability, speech and language difficulties and behavioral disorders like autism spectrum disorder. In addition, patients with SNIBCPS exhibit typical dysmorphic features including macrocephaly, hypertelorism, sparse eyebrows, broad forehead, prominent nose and pointed chin. The severity of the neurological effects as well as the presence of other features is variable among subjects. SNIBCPS is caused likely by pathogenic and pathogenic variants in CHD3 (Chromodomain Helicase DNA Binding Protein 3), which seems to be involved in chromatin remodeling by deacetylating histones. Here, we report 20 additional patients with clinical features compatible with SNIBCPS from 17 unrelated families with confirmed likely pathogenic/pathogenic variants in CHD3. Patients were analyzed by whole exome sequencing and segregation studies were performed by Sanger sequencing. Patients in this study showed different pathogenic variants affecting several functional domains of the protein. Additionally, none of the variants described here were reported in control population databases, and most computational predictors suggest that they are deleterious. The most common clinical features of the whole cohort of patients are global developmental delay (98%) and speech disorder/delay (92%). Other frequent features (51-74%) include intellectual disability, hypotonia, hypertelorism, abnormality of vision, macrocephaly and prominent forehead, among others. This study expands the number of individuals with confirmed SNIBCPS due to pathogenic or likely pathogenic variants in CHD3. Furthermore, we add evidence of the importance of the application of massive parallel sequencing for NDD patients for whom the clinical diagnosis might be challenging and where deep phenotyping is extremely useful to accurately manage and follow up the patients.


Developmental Disabilities , Hypertelorism , Intellectual Disability , Language Development Disorders , Megalencephaly , Humans , DNA Helicases/genetics , Histones , Intellectual Disability/genetics , Megalencephaly/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Developmental Disabilities/genetics
7.
HGG Adv ; 4(4): 100238, 2023 Oct 12.
Article En | MEDLINE | ID: mdl-37710961

MYCN, a member of the MYC proto-oncogene family, regulates cell growth and proliferation. Somatic mutations of MYCN are identified in various tumors, and germline loss-of-function variants are responsible for Feingold syndrome, characterized by microcephaly. In contrast, one megalencephalic patient with a gain-of-function variant in MYCN, p.Thr58Met, has been reported, and additional patients and pathophysiological analysis are required to establish the disease entity. Herein, we report two unrelated megalencephalic patients with polydactyly harboring MYCN variants of p.Pro60Leu and Thr58Met, along with the analysis of gain-of-function and loss-of-function Mycn mouse models. Functional analyses for MYCN-Pro60Leu and MYCN-Thr58Met revealed decreased phosphorylation at Thr58, which reduced protein degradation mediated by FBXW7 ubiquitin ligase. The gain-of-function mouse model recapitulated the human phenotypes of megalencephaly and polydactyly, while brain analyses revealed excess proliferation of intermediate neural precursors during neurogenesis, which we determined to be the pathomechanism underlying megalencephaly. Interestingly, the kidney and female reproductive tract exhibited overt morphological anomalies, possibly as a result of excess proliferation during organogenesis. In conclusion, we confirm an MYCN gain-of-function-induced megalencephaly-polydactyly syndrome, which shows a mirror phenotype of Feingold syndrome, and reveal that MYCN plays a crucial proliferative role, not only in the context of tumorigenesis, but also organogenesis.


Eyelids/abnormalities , Intellectual Disability , Limb Deformities, Congenital , Megalencephaly , Microcephaly , Polydactyly , Tracheoesophageal Fistula , Mice , Animals , Humans , Female , Microcephaly/genetics , Gain of Function Mutation , N-Myc Proto-Oncogene Protein/genetics , Polydactyly/genetics , Phenotype , Megalencephaly/genetics
8.
Pediatr Neurol ; 147: 154-162, 2023 10.
Article En | MEDLINE | ID: mdl-37619436

BACKGROUND: Inactivating mutations in PTEN are among the most common causes of megalencephaly. Activating mutations in other nodes of the PI3K/AKT/MTOR signaling pathway are recognized as a frequent cause of cortical brain malformations. Only recently has PTEN been associated with cortical malformations, and analyses of their prognostic significance have been limited. METHODS: Retrospective neuroimaging analysis and detailed chart review were conducted on 20 participants identified with pathogenic or likely pathogenic mutations in PTEN and a cortical brain malformation present on brain magnetic resonance imaging. RESULTS: Neuroimaging analysis revealed four main cerebral phenotypes-hemimegalencephaly, focal cortical dysplasia, polymicrogyria (PMG), and a less severe category, termed "macrocephaly with complicated gyral pattern" (MCG). Although a high proportion of participants (90%) had neurodevelopmental findings on presentation, outcomes varied and were favorable in over half of participants. Consistent with prior work, 39% of participants had autism spectrum disorder and 19% of participants with either pure-PMG or pure-MCG phenotypes had epilepsy. Megalencephaly and systemic overgrowth were common, but other systemic features of PTEN-hamartoma tumor syndrome were absent in over one-third of participants. CONCLUSIONS: A spectrum of cortical dysplasias is present in individuals with inactivating mutations in PTEN. Future studies are needed to clarify the prognostic significance of each cerebral phenotype, but overall, we conclude that despite a high burden of neurodevelopmental disease, long-term outcomes may be favorable. Germline testing for PTEN mutations should be considered in cases of megalencephaly and cortical brain malformations even in the absence of other findings, including cognitive impairment.


Autism Spectrum Disorder , Megalencephaly , Polymicrogyria , Humans , Phosphatidylinositol 3-Kinases , Retrospective Studies , Megalencephaly/diagnostic imaging , Megalencephaly/genetics , Brain , Polymicrogyria/diagnostic imaging , Polymicrogyria/genetics , PTEN Phosphohydrolase/genetics
9.
Am J Med Genet A ; 191(12): 2825-2830, 2023 12.
Article En | MEDLINE | ID: mdl-37548074

Subdural hemorrhages (SDHs) in children are most often observed in abusive head trauma (AHT), a distinct form of traumatic brain injury, but they may occur in other conditions as well, typically with clear signs and symptoms of an alternative diagnosis. We present a case of an infant whose SDH initially raised the question of AHT, but multidisciplinary evaluation identified multiple abnormalities, including rash, macrocephaly, growth failure, and elevated inflammatory markers, which were all atypical for trauma. These, along with significant cerebral atrophy, ventriculomegaly, and an absence of other injuries, raised concerns for a genetic disorder, prompting genetic consultation. Clinical trio exome sequencing identified a de novo likely pathogenic variant in NLRP3, which is associated with chronic infantile neurological, cutaneous, and articular (CINCA) syndrome, also known as neonatal-onset multisystem inflammatory disease (NOMID). He was successfully treated with interleukin-1 blockade, highlighting the importance of prompt treatment in CINCA/NOMID patients. This case also illustrates how atraumatic cases of SDH can be readily distinguished from AHT with multidisciplinary collaboration and careful consideration of the clinical history and exam findings.


Child Abuse , Cryopyrin-Associated Periodic Syndromes , Exanthema , Megalencephaly , Humans , Infant , Infant, Newborn , Male , Cryopyrin-Associated Periodic Syndromes/drug therapy , Cryopyrin-Associated Periodic Syndromes/genetics , Cryopyrin-Associated Periodic Syndromes/pathology , Hematoma, Subdural , Megalencephaly/diagnosis , Megalencephaly/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
10.
Hum Mol Genet ; 32(21): 3063-3077, 2023 10 17.
Article En | MEDLINE | ID: mdl-37552066

Rab GTPases are important regulators of intracellular vesicular trafficking. RAB5C is a member of the Rab GTPase family that plays an important role in the endocytic pathway, membrane protein recycling and signaling. Here we report on 12 individuals with nine different heterozygous de novo variants in RAB5C. All but one patient with missense variants (n = 9) exhibited macrocephaly, combined with mild-to-moderate developmental delay. Patients with loss of function variants (n = 2) had an apparently more severe clinical phenotype with refractory epilepsy and intellectual disability but a normal head circumference. Four missense variants were investigated experimentally. In vitro biochemical studies revealed that all four variants were damaging, resulting in increased nucleotide exchange rate, attenuated responsivity to guanine exchange factors and heterogeneous effects on interactions with effector proteins. Studies in C. elegans confirmed that all four variants were damaging in vivo and showed defects in endocytic pathway function. The variant heterozygotes displayed phenotypes that were not observed in null heterozygotes, with two shown to be through a dominant negative mechanism. Expression of the human RAB5C variants in zebrafish embryos resulted in defective development, further underscoring the damaging effects of the RAB5C variants. Our combined bioinformatic, in vitro and in vivo experimental studies and clinical data support the association of RAB5C missense variants with a neurodevelopmental disorder characterized by macrocephaly and mild-to-moderate developmental delay through disruption of the endocytic pathway.


Intellectual Disability , Megalencephaly , Neurodevelopmental Disorders , Animals , Humans , Child , Zebrafish/genetics , Zebrafish/metabolism , Caenorhabditis elegans/metabolism , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , Phenotype , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , Megalencephaly/genetics , Developmental Disabilities/genetics , Mutation, Missense/genetics , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
11.
Genes Chromosomes Cancer ; 62(12): 703-709, 2023 12.
Article En | MEDLINE | ID: mdl-37395289

Heterozygous germline or somatic variants in AKT3 gene can cause isolated malformations of cortical development (MCDs) such as focal cortical dysplasia, megalencephaly (MEG), Hemimegalencephaly (HME), dysplastic megalencephaly, and syndromic forms like megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome, and megalencephaly-capillary malformation syndrome. This report describes a new case of HME and capillary malformation caused by a somatic AKT3 variant that differs from the common p.E17K variant described in literature. The patient's skin biopsy from the angiomatous region revealed an heterozygous likely pathogenic variant AKT3:c.241_243dup, p.(T81dup) that may affect the binding domain and downstream pathways. Compared to previously reported cases with a common E17K mosaic variant, the phenotype is milder and patients showed segmental overgrowth, an uncommon characteristic in AKT3 variant cases. These findings suggest that the severity of the disease may be influenced not only by the level of mosaicism but also by the type of variant. This report expands the phenotypic spectrum associated with AKT3 variants and highlights the importance of genomic analysis in patients with capillary malformation and MCDs.


Megalencephaly , Vascular Malformations , Humans , Mutation , Megalencephaly/genetics , Megalencephaly/pathology , Vascular Malformations/genetics , Phenotype , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
12.
Pediatr Neurol ; 144: 72-77, 2023 07.
Article En | MEDLINE | ID: mdl-37172460

BACKGROUND: Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy characterized by early-onset macrocephaly and progressive white matter vacuolation. The MLC1 protein plays a role in astrocyte activation during neuroinflammation and regulates volume decrease following astrocyte osmotic swelling. Loss of MLC1 function activates interleukin (IL)-1ß-induced inflammatory signals. Theoretically, IL-1 antagonists (such as anakinra and canakinumab) can slow the progression of MLC. Herein, we present two boys from different families who had MLC due to biallelic MLC1 gene mutations and were treated with the anti-IL-1 drug anakinra. METHODS: Two boys from different families presented with megalencephaly and psychomotor retardation. Brain magnetic resonance imaging findings in both patients were compatible with the diagnosis of MLC. The diagnosis of MLC was confirmed via Sanger analysis of the MLC1 gene. Anakinra was administered to both patients. Volumetric brain studies and psychometric evaluations were performed before and after anakinra treatment. RESULTS: After anakinra therapy, brain volume in both patients decreased significantly and cognitive functions and social interactions improved. No adverse effects were observed during anakinra therapy. CONCLUSIONS: Anakinra or other IL-1 antagonists can be used to suppress disease activity in patients with MLC; however, the present findings need to be confirmed via additional research.


Interleukin 1 Receptor Antagonist Protein , Megalencephaly , Membrane Proteins , Receptors, Interleukin-1 , Humans , Male , Brain/diagnostic imaging , Brain/metabolism , Cognition , Interleukin 1 Receptor Antagonist Protein/pharmacology , Megalencephaly/diagnostic imaging , Megalencephaly/drug therapy , Megalencephaly/genetics , Membrane Proteins/genetics , Mutation , Receptors, Interleukin-1/antagonists & inhibitors
13.
Am J Hum Genet ; 110(5): 826-845, 2023 05 04.
Article En | MEDLINE | ID: mdl-37098352

Alterations in cortical neurogenesis are implicated in neurodevelopmental disorders including autism spectrum disorders (ASDs). The contribution of genetic backgrounds, in addition to ASD risk genes, on cortical neurogenesis remains understudied. Here, using isogenic induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) and cortical organoid models, we report that a heterozygous PTEN c.403A>C (p.Ile135Leu) variant found in an ASD-affected individual with macrocephaly dysregulates cortical neurogenesis in an ASD-genetic-background-dependent fashion. Transcriptome analysis at both bulk and single-cell level revealed that the PTEN c.403A>C variant and ASD genetic background affected genes involved in neurogenesis, neural development, and synapse signaling. We also found that this PTEN p.Ile135Leu variant led to overproduction of NPC subtypes as well as neuronal subtypes including both deep and upper layer neurons in its ASD background, but not when introduced into a control genetic background. These findings provide experimental evidence that both the PTEN p.Ile135Leu variant and ASD genetic background contribute to cellular features consistent with ASD associated with macrocephaly.


Autism Spectrum Disorder , Autistic Disorder , Induced Pluripotent Stem Cells , Megalencephaly , Neural Stem Cells , Humans , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Megalencephaly/genetics , Neurogenesis/genetics , Neurons , PTEN Phosphohydrolase/genetics
14.
Am J Med Genet A ; 191(6): 1619-1625, 2023 06.
Article En | MEDLINE | ID: mdl-36905087

The p-21-activated kinase 1 (PAK1) protein, encoded by the PAK1 gene, is an evolutionarily conserved serine/threonine-protein kinase that regulates key cellular developmental processes. To date, seven de novo PAK1 variants have been reported to cause the Intellectual Developmental Disorder with Macrocephaly, Seizures, and Speech Delay (IDDMSSD). In addition to the namesake features, other common characteristics include structural brain anomalies, delayed development, hypotonia, and dysmorphic features. Here, we report a de novo PAK1 NM_002576.5: c.1409 T > A variant (p.Leu470Gln) identified by trio genome sequencing (GS) in a 13-year-old boy with postnatal macrocephaly, obstructive hydrocephalus, medically refractory epilepsy, spastic quadriplegia, white matter hyperintensities, profound developmental disabilities, and a horseshoe kidney. This is the first recurrently affected residue identified in the protein kinase domain. Combined assessment of the eight pathogenic PAK1 missense variants reveal that the variants cluster in either the protein kinase or autoregulatory domains. Although interpretation of the phenotypic spectrum is limited by the sample size, neuroanatomical alterations were found more often in individuals with PAK1 variants in the autoregulatory domain. In contrast, non-neurological comorbidities were found more often in individuals with PAK1 variants in the protein kinase domain. Together, these findings expand the clinical spectrum of PAK1-associated IDDMSSD and reveal potential correlations with the affected protein domains.


Epilepsy , Hydrocephalus , Intellectual Disability , Megalencephaly , Male , Humans , Adolescent , Protein Domains , Protein Kinases , Epilepsy/diagnosis , Epilepsy/genetics , Megalencephaly/diagnosis , Megalencephaly/genetics , Intellectual Disability/genetics , Hydrocephalus/diagnosis , Hydrocephalus/genetics , Quadriplegia/diagnosis , Quadriplegia/genetics , p21-Activated Kinases/genetics , p21-Activated Kinases/chemistry
15.
Hum Mol Genet ; 32(10): 1589-1606, 2023 05 05.
Article En | MEDLINE | ID: mdl-36519762

Autism spectrum disorders (ASD) display both phenotypic and genetic heterogeneity, impeding the understanding of ASD and development of effective means of diagnosis and potential treatments. Genes affected by genomic variations for ASD converge in dozens of gene ontologies (GOs), but the relationship between the variations at the GO level have not been well elucidated. In the current study, multiple types of genomic variations were mapped to GOs and correlations among GOs were measured in ASD and control samples. Several ASD-unique GO correlations were found, suggesting the importance of co-occurrence of genomic variations in genes from different functional categories in ASD etiology. Combined with experimental data, several variations related to WNT signaling, neuron development, synapse morphology/function and organ morphogenesis were found to be important for ASD with macrocephaly, and novel co-occurrence patterns of them in ASD patients were found. Furthermore, we applied this gene ontology correlation analysis method to find genomic variations that contribute to ASD etiology in combination with changes in gene expression and transcription factor binding, providing novel insights into ASD with macrocephaly and a new methodology for the analysis of genomic variation.


Autism Spectrum Disorder , Megalencephaly , Humans , Autism Spectrum Disorder/genetics , Genomics , Megalencephaly/genetics
16.
Eur J Med Genet ; 66(1): 104670, 2023 Jan.
Article En | MEDLINE | ID: mdl-36414205

BACKGROUND: Since the first description of a BRWD3-associated nonsydromic intellectual disability (ID) disorder in 2007, 21 additional families have been reported in the literature. METHODS: Using exome sequencing (ES) and international data sharing, we identified 14 additional unrelated individuals with pathogenic BRWD3 variants (12 males and 2 females, including one with skewed X-inactivation). We reviewed the 31 previously published cases in the literature with clinical data available, and describe the collective phenotypes of 43 males and 2 females, with 33 different BRWD3 variants. RESULTS: The most common features in males (excluding one patient with a mosaic variant) included ID (39/39 males), speech delay (24/25 males), postnatal macrocephaly (28/35 males) with prominent forehead (18/25 males) and large ears (14/26 males), and obesity (12/27 males). Both females presented with macrocephaly, speech delay, and epilepsy, while epilepsy was only observed in 4/41 males. Among the 28 variants with available segregation reported, 19 were inherited from unaffected mothers and 9 were de novo. CONCLUSION: This study demonstrates that the BRWD3-related phenotypes are largely non-specific, leading to difficulty in clinical recognition of this disorder. A genotype-first approach, however, allows for the more efficient diagnosis of the BRWD3-related nonsyndromic ID. The refined clinical features presented here may provide additional diagnostic assistance for reverse phenotyping efforts.


Intellectual Disability , Language Development Disorders , Megalencephaly , Male , Female , Humans , Janus Kinases/genetics , Janus Kinases/metabolism , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction , Intellectual Disability/genetics , Syndrome , Megalencephaly/genetics , Phenotype , Mutation , Transcription Factors/genetics
17.
Hum Mol Genet ; 32(4): 580-594, 2023 01 27.
Article En | MEDLINE | ID: mdl-36067010

DEPDC5 (DEP Domain-Containing Protein 5) encodes an inhibitory component of the mammalian target of rapamycin (mTOR) pathway and is commonly implicated in sporadic and familial focal epilepsies, both non-lesional and in association with focal cortical dysplasia. Germline pathogenic variants are typically heterozygous and inactivating. We describe a novel phenotype caused by germline biallelic missense variants in DEPDC5. Cases were identified clinically. Available records, including magnetic resonance imaging and electroencephalography, were reviewed. Genetic testing was performed by whole exome and whole-genome sequencing and cascade screening. In addition, immunohistochemistry was performed on skin biopsy. The phenotype was identified in nine children, eight of which are described in detail herein. Six of the children were of Irish Traveller, two of Tunisian and one of Lebanese origin. The Irish Traveller children shared the same DEPDC5 germline homozygous missense variant (p.Thr337Arg), whereas the Lebanese and Tunisian children shared a different germline homozygous variant (p.Arg806Cys). Consistent phenotypic features included extensive bilateral polymicrogyria, congenital macrocephaly and early-onset refractory epilepsy, in keeping with other mTOR-opathies. Eye and cardiac involvement and severe neutropenia were also observed in one or more patients. Five of the children died in infancy or childhood; the other four are currently aged between 5 months and 6 years. Skin biopsy immunohistochemistry was supportive of hyperactivation of the mTOR pathway. The clinical, histopathological and genetic evidence supports a causal role for the homozygous DEPDC5 variants, expanding our understanding of the biology of this gene.


Epilepsies, Partial , Epileptic Syndromes , Megalencephaly , Polymicrogyria , Humans , Mutation , GTPase-Activating Proteins/genetics , TOR Serine-Threonine Kinases/genetics , Epilepsies, Partial/genetics , Megalencephaly/genetics
18.
Genes (Basel) ; 13(12)2022 11 30.
Article En | MEDLINE | ID: mdl-36553517

The NFIA (nuclear factor I/A) gene encodes for a transcription factor belonging to the nuclear factor I family and has key roles in various embryonic differentiation pathways. In humans, NFIA is the major contributor to the phenotypic traits of "Chromosome 1p32p31 deletion syndrome". We report on two new cases with deletions involving NFIA without any other pathogenic protein-coding gene alterations. A cohort of 24 patients with NFIA haploinsufficiency as the sole anomaly was selected by reviewing the literature and public databases in order to analyze all clinical features reported and their relative frequencies. This process was useful because it provided an overall picture of the phenotypic outcome of NFIA haploinsufficiency and helped to define a cluster of phenotypic traits that can facilitate clinicians in identifying affected patients. NFIA haploinsufficiency can be suspected by a careful observation of the dysmorphisms (macrocephaly, craniofacial, and first-finger anomalies), and this potential diagnosis is strengthened by the presence of intellectual and developmental disabilities or other neurodevelopmental disorders. Further clues of NFIA haploinsufficiency can be provided by instrumental tests such as MRI and kidney urinary tract ultrasound and confirmed by genetic testing.


Megalencephaly , Urinary Tract , Humans , NFI Transcription Factors/genetics , Haploinsufficiency/genetics , Megalencephaly/genetics , Chromosome Deletion
19.
Genes (Basel) ; 13(12)2022 12 04.
Article En | MEDLINE | ID: mdl-36553552

Macrocephaly frequently occurs in single-gene disorders affecting the PI3K-AKT-MTOR pathway; however, epigenetic mutations, mosaicism, and copy number variations (CNVs) are emerging relevant causative factors, revealing a higher genetic heterogeneity than previously expected. The aim of this study was to investigate the role of rare CNVs in patients with macrocephaly and review genomic loci and known genes. We retrieved from the DECIPHER database de novo <500 kb CNVs reported on patients with macrocephaly; in four cases, a candidate gene for macrocephaly could be pinpointed: a known microcephaly gene-TRAPPC9, and three genes based on their functional roles-RALGAPB, RBMS3, and ZDHHC14. From the literature review, 28 pathogenic CNV genomic loci and over 300 known genes linked to macrocephaly were gathered. Among the genomic regions, 17 CNV loci (~61%) exhibited mirror phenotypes, that is, deletions and duplications having opposite effects on head size. Identifying structural variants affecting head size can be a preeminent source of information about pathways underlying brain development. In this study, we reviewed these genes and recurrent CNV loci associated with macrocephaly, as well as suggested novel potential candidate genes deserving further studies to endorse their involvement with this phenotype.


DNA Copy Number Variations , Megalencephaly , Humans , DNA Copy Number Variations/genetics , Phosphatidylinositol 3-Kinases/genetics , Genome , Genomics , Megalencephaly/genetics
20.
BMC Genomics ; 23(1): 849, 2022 Dec 22.
Article En | MEDLINE | ID: mdl-36550402

BACKGROUND: Modern human brains and skull shapes differ from other hominids. Brain growth disorders as micro- (ASPM, MCPH1) and macrocephaly (NFIX, GLI3) have been highlighted as relevant for the evolution in humans due to the impact in early brain development. Genes associated with macrocephaly have been reported to cause this change, for example NSD1 which causes Sotos syndrome. RESULTS: In this study we performed a systematic literature review, located the reported variants associated to Sotos syndrome along the gene domains, compared the sequences with close primates, calculated their similarity, Ka/Ks ratios, nucleotide diversity and selection, and analyzed the sequence and structural conservation with distant primates. We aimed to understand if NSD1 in humans differs from other primates since the evolution of NSD1 has not been analyzed in primates, nor if the localization of the mutations is limited to humans. Our study found that most variations causing Sotos syndrome are in exon 19, 22 and 10. In the primate comparison we did not detect Ka/Ks ratios > 1, but a high nucleotide diversity with non-synonymous variations in exons 10, 5, 9, 11 and 23, and sites under episodic selection in exon 5 and 23, and human, macaque/colobus/tarsier/galago and tarsier/lemur/colobus. Most of the domains are conserved in distant primates with a particular progressive development from a simple PWWP1 in O. garnetti to a complex structure in Human. CONCLUSION: NSD1 is a chromatin modifier that suggests that the selection could influence brain development during modern human evolution and is not present in other primates; however, nowadays the nucleotide diversity is associated with Sotos syndrome.


Hominidae , Megalencephaly , Sotos Syndrome , Tarsiidae , Humans , Animals , Sotos Syndrome/genetics , Histone Methyltransferases/genetics , Histone-Lysine N-Methyltransferase/genetics , Tarsiidae/genetics , Colobus/genetics , Nuclear Proteins/genetics , Mutation , Exons/genetics , Hominidae/genetics , Megalencephaly/genetics , Nucleotides , Cytoskeletal Proteins/genetics , Cell Cycle Proteins/genetics
...